Large Diffusivity Finite-dimensional Asymptotic Behaviour of a Semilinear Wave Equation
نویسنده
چکیده
We study the effects of large diffusivity in all parts of the domain in a linearly damped wave equation subject to standard zero Robin-type boundary conditions. In the linear case, we show in a given sense that the asymptotic behaviour of solutions verifies a second-order ordinary differential equation. In the semilinear case, under suitable dissipative assumptions on the nonlinear term, we prove the existence of a global attractor for fixed diffusion and that the limiting attractor for large diffusion is finite dimensional.
منابع مشابه
Asymptotic behaviour for a semilinear nonlocal equation
We study the semilinear nonlocal equation ut = J∗u− u− u in the whole R . First, we prove the global well-posedness for initial conditions u(x, 0) = u0(x) ∈ L(R ) ∩ L∞(RN ). Next, we obtain the long time behavior of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J : finite time extinction for p < 1, faster than exponential decay for the ...
متن کاملBlow-up at the Boundary for Degenerate Semilinear Parabolic Equations
This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...
متن کاملAsymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains
In this paper the long time asymptotic behavior of solutions of semilinear symmetric hyperbolic system including Maxwell s equations and the scalar wave equation in an ar bitraty domain are investigated The possibly nonlinear damping term may vanish on a certain subset of the domain It is shown that the solution decays weakly to zero if and only if the initial state is orthogonal to all station...
متن کاملAsymptotic Behaviour and Blow-up of Some Unbounded Solutions for a Semilinear Heat Equation
The initial-boundary value problem for the nonlinear heat equation u, = Au + Xf(u) might possibly have global classical unbounded solutions, u* = u(x, r; uS), for some "critical" initial data u*. The asymptotic behaviour of such solutions is studied, when there exists a unique bounded steady state w(x,A) for some values of L We find, for radial symmetric solutions, that u*(r,t)-*w{r) for any 0 ...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کامل